

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Super State Machine 2.0.2 documentation

Welcome to Super State Machine’s documentation!

Contents:

	Super State Machine
	Features

	Installation

	Usage
	State machine

	Options

	State machine as property

	utils

	API
	machines

	utils

	extras

	errors

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	2.0.2 (2017-03-13)

	2.0.1 (2017-02-27)

	2.0 (2016-09-26)

	1.0 (2014-09-04)

	0.1.0 (2014-08-08)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

Super State Machine

[image: https://badge.fury.io/py/super_state_machine.png]
 [http://badge.fury.io/py/super_state_machine][image: https://travis-ci.org/beregond/super_state_machine.png?branch=master]
 [https://travis-ci.org/beregond/super_state_machine][image: https://pypip.in/d/super_state_machine/badge.png]
 [https://pypi.python.org/pypi/super_state_machine]Super State Machine gives you utilities to build finite state machines.

	Free software: BSD license

	Documentation: https://super_state_machine.readthedocs.org

	Source: https://github.com/beregond/super_state_machine

Features

	Fully tested with Python 2.7, 3.3, 3.4 and PyPy.

	Create finite state machines:

>>> from enum import Enum

>>> from super_state_machine import machines

>>> class Task(machines.StateMachine):
...
... state = 'draft'
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'

>>> task = Task()
>>> task.is_draft
False
>>> task.set_draft()
>>> task.state
'draft'
>>> task.state = 'scheduled'
>>> task.is_scheduled
True
>>> task.state = 'process'
>>> task.state
'processing'
>>> task.state = 'wrong'
*** ValueError: Unrecognized value ('wrong').

	Define allowed transitions graph, define additional named transitions
and checkers:

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'
...
... class Meta:
...
... allow_empty = False
... initial_state = 'draft'
... transitions = {
... 'draft': ['scheduled', 'failed'],
... 'scheduled': ['failed'],
... 'processing': ['sent', 'failed']
... }
... named_transitions = [
... ('process', 'processing', ['scheduled']),
... ('fail', 'failed')
...]
... named_checkers = [
... ('can_be_processed', 'processing'),
...]

>>> task = Task()
>>> task.state
'draft'
>>> task.process()
*** TransitionError: Cannot transit from 'draft' to 'processing'.
>>> task.set_scheduled()
>>> task.can_be_processed
True
>>> task.process()
>>> task.state
'processing'
>>> task.fail()
>>> task.state
'failed'

Note, that third argument restricts from which states transition will be
added to allowed (in case of process, new allowed transition will be
added, from ‘scheduled’ to ‘processing’). No argument means all available
states, None or empty list won’t add anything beyond defined ones.

	Use state machines as properties:

>>> from enum import Enum

>>> from super_state_machine import machines, extras

>>> class Lock(machine.StateMachine):

... class States(Enum):
...
... OPEN = 'open'
... LOCKED = 'locked'
...
... class Meta:
...
... allow_empty = False
... initial_state = 'locked'
... named_transitions = [
... ('open', 'open'),
... ('lock', 'locked'),
...]

>>> class Safe(object):
...
... lock1 = extras.PropertyMachine(Lock)
... lock2 = extras.PropertyMachine(Lock)
... lock3 = extras.PropertyMachine(Lock)
...
... locks = ['lock1', 'lock2', 'lock3']
...
... def is_locked(self):
... locks = [getattr(self, lock).is_locked for lock in self.locks]
... return any(locks)
...
... def is_open(self):
... locks = [getattr(self, lock).is_open for lock in self.locks]
... return all(locks)

>>> safe = Safe()
>>> safe.lock1
'locked'
>>> safe.is_open
False
>>> safe.lock1.open()
>>> safe.lock1.is_open
True
>>> safe.lock1
'open'
>>> safe.is_open
False
>>> safe.lock2.open()
>>> safe.lock3 = 'open'
>>> safe.is_open
True

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

Installation

At the command line:

$ easy_install super_state_machine

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv super_state_machine
$ pip install super_state_machine

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

Usage

State machine

State machine allows to operate on state, where allowed states are defined by
states enum.

Remember that states enum must be unique.

Meta

All options for state machine are passed through Meta class, like below:

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'
...
... class Meta:
...
... named_checkers = [
... ('can_be_processed', 'processing'),
...]

You can see that about only option named_checkers is provided. In fact it
is not necessary to provide any option at all. For full reference see
Options.

Word about value translation

Whenever you will be passing enum value or string to represent state (in meta,
in options, in methods is_*, set_* or can_be_*) remember that these
values must clearly describe enum value.

For example in following case:

>>> class Lock(machine.StateMachine):
...
... class States(Enum):
...
... OPEN = 'open'
... OPENING = 'opening'
... LOCKED = 'locked'
... LOCKING = 'locking'

values that clear state open are string 'open' and
Lock.States.OPEN, but for opening state these are strings 'openi',
'opening' and Lock.States.OPENING. In other words you must provide as
much information to make it not necessary to guess end value. Otherwise
AmbiguityError will be raised.

Simple case

In simplest case you just have to define States enum to definen what valid
states are and start using it.

>>> from enum import Enum

>>> from super_state_machine import machines

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'

>>> task = Task()
>>> task.is_draft
False
>>> task.set_draft()
>>> task.state
'draft'
>>> task.state = 'scheduled'
>>> task.is_scheduled
True
>>> task.state = 'p'
>>> task.state
'processing'
>>> task.state = 'wrong'
*** ValueError: Unrecognized value ('wrong').

Actual state as enum

You can also get actual state in enum form by property actual_state, or
as_enum:

>>> task.actual_state
<States.DRAFT: 'draft'>
>>> task.as_enum
<States.DRAFT: 'draft'>

Transitions

In case when you want to define what proper transitions are, you need to define
transitions option.

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'
...
... class Meta:
...
... transitions = {
... 'draft': ['scheduled', 'failed'],
... 'scheduled': ['failed'],
... 'processing': ['sent', 'failed'],
... }
... named_transitions = [
... ('process', 'processing', ['scheduled']),
... ('fail', 'failed'),
...]

In example above transitions option defines which transitions are valid -
for example from that option we can read that state can be switched to
draft but only from scheduled or failed.

You can change state to desired one by generated methods like set_*, so if
you want to change state of Task to draft it is enough to call
set_draft on instance of Task.

There is also named_transitions option. This is list of 3-tuples with name,
desired state optional “from” states, or 2-tuples with name and desired states.
First line means that instance of task will have method called process
which will trigger change of state to process. It is like you would call
method set_processing but sounds better. Also all “from” states are
added to list of valid transitions of Task.

Warning

In case you won’t provide third argument in tuple, it is considered that
transition to that case is allowed from ANY other state (like ('fail',
'failed') case). If you want just to add named transition without
modifying actual transitions table, pass as None as third argument.

... named_transitions = [
... ('process', 'processing', None),
... }

See also

complete

Forced set (forced transition)

You can also use force_set which will change current state to any other
proper state without checkint if such transition is allowed. It may be seen
as ‘hard reset’ to some state.

>>> task.force_set('draft')
>>> task.force_set(Task.States.SCHEDULED)

New in version 2.0.

Checkers

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'
...
... class Meta:
...
... named_checkers = [
... ('can_be_processed', 'processing'),
...]

Each instance of state machine has auto generated set of checkers (which are
properties) like can_be_*. In this case checkers will be like
can_be_draft, can_be_sent etc. If you want to have custom checkers
defined, you can either define them by yourself or pass as 2-tuple in
named_checkers option. Tuple must have name of checker and state to check,
so in this case instance of Task will have property can_be_processed
which will work like can_be_processing (yet sounds better).

Getters

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = 'draft'
... SCHEDULED = 'scheduled'
... PROCESSING = 'processing'
... SENT = 'sent'
... FAILED = 'failed'

Getters checks state, but checks one particular state. All of getters are
properties and are named like is_*. If you want to check if instance of
Task is currently draft, just call instance.is_draft. This work just
like calling instance.is_('draft'). This comes handy especially in
templates.

Name collisions

In case any auto generated method would collide with already defined one, or if
named transitions or checkers would cause collision with already defined one or
with other auto generated method, ValueError will be raised. In particular
name collisions (intentional or not) are prohibited and will raise an
exception.

Options

states_enum_name

Default value: 'States'.

Define name of states enum. States enum must be present in class definition
under such name.

allow_empty

Default value: True.

Determine if empty state is allowed. If this option is set to False option
initial_state must be provided.

initial_state

Default value: None.

Defines initial state the instance will start it’s life cycle.

complete

This option defines if states graph is complete. It this option is set to
True then any transition is always valid. If this option is set to
False then state machine looks to states graph to determine if this
transition should succeeed.

This option in fact doesn’t have default value. If isn’t provided and
transitions neither named_transitions options are not provided then it
is set to True. If one or both options are provided this option is set to
False (still, only if it wasn’t provided in Meta of state machine).

transitions

Dict that defines basic state graph (which can be later filled up with data
comming from named_transitions).

Each key defines target of transition, and value (which must be a list)
defines initial states for transition.

... class Meta:
...
... transitions = {
... 'draft': ['scheduled', 'failed'],
... 'scheduled': ['failed'],
... 'processing': ['sent', 'failed'],
... }

named_transitions

List of 3-tuples or 2-tuples (or mixed) which defines named transitions. These
definitions affect states graph:

	If there is no third argument (2-tuple was passed) then desired transition
is valid from all states.

	If there is None passed as third argument - the states will not be
affected.

	Otherwise third argument must be list of allowed initial states for this
transition. Remember that these transitions will be added to state
graph. Also other transitions defined in transitions option
will still be valid for given transition name.

... class Meta:
...
... transitions = {
... 'draft': ['scheduled', 'failed'],
... 'scheduled': ['failed'],
... 'processing': ['sent', 'failed'],
... }
... named_transitions = [
... ('process', 'processing', ['scheduled']),
... ('fail', 'failed'),
...]

In this case method process will change state to processing but
transition is valid from three initial states: scheduled, sent and
failed.

named_checkers

List of 2-tuple which defines named transition checkers. Tuple consist of
checker name and desired state. When called, checher will check if state
machine can transit to desired state.

... class Meta:
...
... named_checkers = [
... ('can_be_processed', 'processing'),
...]

In example above property can_be_processed on instance will determine if
state can be changed to state processing.

State machine as property

Thanks to extras module you can use state machines as properties!

>>> from enum import Enum

>>> from super_state_machine import machines, extras

>>> class Lock(machine.StateMachine):

... class States(Enum):
...
... OPEN = 'open'
... LOCKED = 'locked'
...
... class Meta:
...
... allow_empty = False
... initial_state = 'locked'
... named_transitions = [
... ('open', 'o'),
... ('lock', 'l'),
...]

>>> class Safe(object):
...
... lock1 = extras.PropertyMachine(Lock)
... lock2 = extras.PropertyMachine(Lock)
... lock3 = extras.PropertyMachine(Lock)
...
... _locks = ['lock1', 'lock2', 'lock3']
...
... def is_locked(self):
... locks = [getattr(self, lock).is_locked for lock in self._locks]
... return any(locks)
...
... def is_open(self):
... locks = [getattr(self, lock).is_open for lock in self._locks]
... return all(locks)

>>> safe = Safe()
>>> safe.lock1
'locked'
>>> safe.is_open
False
>>> safe.lock1.open()
>>> safe.lock1.is_open
True
>>> safe.lock1
'open'
>>> safe.is_open
False
>>> safe.lock2.open()
>>> safe.lock3 = 'open'
>>> safe.is_open
True

In this case method as_enum is really handy:

>>> safe.lock1.as_enum
<States.OPEN: 'open'>

Although you could also use actual_state here (yet as_enum sounds more
familiar).

Warning

In this case value is always visible as string, so there is no None
value returned. Instead of this None is transformed into '' (empty
string).

Note

Remember that change of state can be made by calling method
safe.lock1.lock, assignation of string (or its part) like safe.lock1 =
'open' or safe.lock1 = 'o' or assignation of enum like safe.lock1 =
Lock.States.OPEN.

utils

EnumValueTranslator

This class is part of inner API (see
super_state_machine.utils.Enumvaluetranslator) but is really handy -
it is used by state machine to translate all (short) string representations to
enum values.

It also can ensure that given enum belongs to proper states enum.

>>> import enum

>>> from super_state_machine import utils

>>> class Choices(enum.Enum):
...
... ONE = 'one'
... TWO = 'two'
... THREE = 'three'

>>> class OtherChoices(enum.Enum):
...
... ONE = 'one'

>>> trans = utils.Enumvaluetranslator(Choices)
>>> trans.translate('o')
<Choices.ONE: 'one'>
>>> trans.translate('one')
<Choices.ONE: 'one'>
>>> trans.translate(Choices.ONE)
<Choices.ONE: 'one'>

>>> trans.translate('t')
*** AmbiguityError: Can't decide which value is proper for value 't' (...)

>>> trans.translate(OtherChoices.ONE)
*** ValueError: Given value ('OtherChoices.ONE') doesn't belong (...)

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

API

Contents:

	machines

	utils

	extras

	errors

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

 	API

machines

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

 	API

utils

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

 	API

extras

Extra utilities for state machines, to make them more usable.

	
class super_state_machine.extras.PropertyMachine(machine_type)[source]

	Descriptor to help using machines as properties.

	
class super_state_machine.extras.ProxyString[source]

	String that proxies every call to nested machine.

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

 	API

errors

Errors module.

	
exception super_state_machine.errors.TransitionError[source]

	Raised for situation, when transition is not allowed.

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/beregond/super_state_machine/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Super State Machine could always use more documentation, whether as part of the
official Super State Machine docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/beregond/super_state_machine/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up super_state_machine for local development.

	Fork the super_state_machine repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/super_state_machine.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv super_state_machine
$ cd super_state_machine/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 super_state_machine tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/beregond/super_state_machine/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_super_state_machine

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Super State Machine 2.0.2 documentation

Credits

Development Lead

	Szczepan Cieślik <szczepan.cieslik@gmail.com>

Contributors

(In alphabetical order)

	Eric Dill <eric.dill@maxpoint.com>

	Thomas A Caswell <tcaswell@gmail.com>

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Super State Machine 2.0.2 documentation

History

2.0.2 (2017-03-13)

	Fixed requirements for Python > 3.4.

2.0.1 (2017-02-27)

	Remove enum34 for Python > 3.4.

	Added support for Python 2.6.

2.0 (2016-09-26)

	Added force_set method.

	Added field machine.

	Added support for Python 3.5.

Backward compatibility breaks:

	Empty state is now disallowed.

	Only full names are allowed, when using scalars, no shortcuts.

	Removed support for unhashable types.

1.0 (2014-09-04)

	Added all basic features.

0.1.0 (2014-08-08)

	First release on PyPI.

	Added utilities to create simple state machine.

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Super State Machine 2.0.2 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 super_state_machine	

 	
 	
 super_state_machine.errors	

 	
 	
 super_state_machine.extras	

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Super State Machine 2.0.2 documentation

Index

 P
 | S
 | T

P

 	

 	PropertyMachine (class in super_state_machine.extras)

 	

 	ProxyString (class in super_state_machine.extras)

S

 	

 	super_state_machine.errors (module)

 	

 	super_state_machine.extras (module)

T

 	

 	TransitionError

 Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

 _modules/super_state_machine/errors.html

 Navigation

 		
 index

 		
 modules |

 		Super State Machine 2.0.2 documentation »

 		Module code »

 Source code for super_state_machine.errors

"""Errors module."""

[docs]class TransitionError(RuntimeError):

 """Raised for situation, when transition is not allowed."""

 © Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

_modules/super_state_machine/extras.html

 Navigation

 		
 index

 		
 modules |

 		Super State Machine 2.0.2 documentation »

 		Module code »

 Source code for super_state_machine.extras

"""Extra utilities for state machines, to make them more usable."""

from weakref import WeakKeyDictionary

[docs]class ProxyString(str):

 """String that proxies every call to nested machine."""

 def __new__(cls, value, machine):
 """Create new string instance with reference to given machine."""
 string = super(cls, cls).__new__(cls, value)
 string.state_machine = machine
 return string

 def __getattr__(self, name):
 """Proxy call to machine."""
 return getattr(self.state_machine, name)

[docs]class PropertyMachine(object):

 """Descriptor to help using machines as properties."""

 def __init__(self, machine_type):
 """Create descriptor."""
 self.memory = WeakKeyDictionary()
 self.machine_type = machine_type

 def __set__(self, instance, value):
 """Set state to machine."""
 self.check_memory(instance)
 self.memory[instance].set_(value)

 def __get__(self, instance, _type=None):
 """Get machine state."""
 if instance is None:
 return self
 self.check_memory(instance)
 machine = self.memory[instance]
 return ProxyString(machine.actual_state.value, machine)

 def check_memory(self, instance):
 try:
 self.memory[instance]
 except KeyError:
 self.memory[instance] = self.machine_type()

 © Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Super State Machine 2.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Super State Machine 2.0.2 documentation »

 All modules for which code is available

		super_state_machine.errors

		super_state_machine.extras

 © Copyright 2014, Szczepan Cieślik.
 Created using Sphinx 1.2.2.

